on general relatively isotropic mean landsberg metrics

نویسندگان

b. najafi

چکیده

the general relatively isotropic mean landsberg metrics contain the general relativelyisotropic landsberg metrics. a class of finsler metrics is given, in which the mentioned two conceptsare equivalent. in this paper, an interpretation of general relatively isotropic mean landsberg metrics isfound by using c-conformal transformations. some necessary conditions for a general relativelyisotropic mean landsberg metric, as well as generalized landsberg metric to be a riemannian metric arealso found.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on general relatively isotropic l-curvature finsler metrics

in this paper the general relatively isotropic l -curvature finsler metrics are studied. it isshown that on constant relatively landsberg spaces, the concepts of weakly landsbergian, landsbergianand generalized landsbergian metrics are equivalent. some necessary conditions for a relativelyisotropic l -curvature finsler metric to be a riemannian metric are also found.

متن کامل

On BC-generalized Landsberg Finsler metrics

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

متن کامل

on bc-generalized landsberg finsler metrics

equality of -curvatures of the berwald and cartan connections leads to a new class of finsler metrics, so-called bc-generalized landsberg metrics. here, we prove that every bc-generalized landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

متن کامل

finsler metrics with special landsberg curvature

in this paper, we study a class of finsler metrics which contains the class of p-reducible andgeneral relatively isotropic landsberg metrics, as special cases. we prove that on a compact finsler manifold,this class of metrics is nothing other than randers metrics. finally, we study this class of finsler metrics withscalar flag curvature and find a condition under which these metrics reduce to r...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

on a class of locally dually flat finsler metrics with isotropic s-curvature

dually flat finsler metrics form a special and valuable class of finsler metrics in finsler information geometry,which play a very important role in studying flat finsler information structure. in this paper, we prove that everylocally dually flat generalized randers metric with isotropic s-curvature is locally minkowskian.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 29

شماره 3 2005

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023